CONCOURS D'ENTRÉE 1999

MATHÉMATIQUES: ÉPREUVE B

FILIÈRE PHYSIQUE ET CHIMIE

DURÉE: 2 heures 30.

N.B.: Ce sujet comporte 2 pages de texte.

Dans tout le problème, n est un entier fixé supérieur ou égal à 2. On identifiera le polynôme $P \in \mathbb{R}[X]$ avec la fonction polynômiale

$$[-1,1] \longrightarrow \mathbb{R}$$

$$t \longrightarrow P(t)$$

I

Soit $\mathbb{R}_{n}[X]$ l'espace vectoriel des polynômes de degré $\leq n$ muni de la base canonique $B = (1, X, ..., X^{n})$.

Soit φ l'application qui à $P \in \mathbb{R}_n[X]$ associe $\varphi(P) = (1-X^2) P''(X) - 3X P'(X)$.

- 1. a. Montrer que φ est un endomorphisme de $\mathbb{R}_{p}[X]$.
 - b. Ecrire la matrice de φ dans la base \mathcal{B} .
- 2. a. Déterminer les valeurs propres de φ .
 - b. Montrer que φ est diagonalisable.
 - c. Montrer qu'il existe une base $(P_0, P_1, ...P_n)$ formée de vecteurs propres de coefficients dominants égaux à 1, tels que pour tout $k \in \{0,, n\}$, P_k soit de degré k.
 - d. Déterminer P₀, P₁, P₂, P₃.
 - e. Préciser la parité de P_n. Calculer le coefficient de Xⁿ⁻² dans P_n.
- 3. On considère l'équation différentielle (E_n) : $(1-x^2)$ y" 3x y' + n(n+2) y = 0. On suppose dans cette question que n est impair.

Montrer qu'il existe une solution de (E_n) développable en série entière de la forme $\sum_{p=0}^{\infty} a_{2p}^{2p}$ telle que pour tout $p \in \mathbb{N}$, $a_{2p}^{2p} \neq 0$. Déterminer le rayon de convergence de cette série entière.

En déduire toutes les solution de (E_n) sur l'intervalle]-1,1[. (L'étude du cas pair est analogue; elle n'est pas demandée).

II

On note E l'espace des fonctions continues de [-1,1] dans R.

Pour f et g dans E on pose : $\langle f,g \rangle = \int_{-1}^{1} f(t) g(t) \sqrt{1-t^2} dt$.

- 1. a. Montrer que l'on définit ainsi un produit scalaire dans E.
 - b. Calculer $\langle X^i, X^j \rangle$ pour i et j dans N.
- 2. Pour $f \in E$ de classe C^2 sur [-1,1], on pose : $\varphi(f)(x) = (1-x^2) f''(x) 3x f'(x)$.
 - a. Montrer que :si f et g sont de classe C^2 sur [-1,1] alors $\langle \varphi(f), g \rangle = \langle f, \varphi(g) \rangle$.
 - b. Montrer que les polynômes P, définis dans la question I 2°c) on a :

$$\forall k \in \{0, 1, ..., n-1\}, < P_k, P_n > = 0.$$

- 3. a. Montrer que $P_n XP_{n-1}$ est de degré n-1 et qu'il est orthogonal à tout polynôme de degré n-3 (pour $n \ge 3$). En déduire que $P_n XP_{n-1}$ est combinaison linéaire de P_{n-1} et de P_{n-2} .
 - b. En utilisant le I.2.e., montrer $4P_n 4XP_{n-1} + P_{n-2} = 0$ pour $n \ge 2$.
 - c. Calculer P_n(1).
- 4. a. Montrer que $\langle P_n, P_n \rangle = \langle P_n, X^n \rangle = \int_{-1}^1 t^n P_n(t) \sqrt{1-t^2} dt$. Calculer $\langle P_n, P_n \rangle$ pour $0 \le n \le 2$.
 - b. Pour $k \in \{0,1,...n\}$, montrer : $\langle P_k, X^{k+2} \rangle = \frac{k+1}{4} \langle P_k, P_k \rangle$.
 - c. En déduire une relation de récurrence entre $\langle P_n, P_n \rangle$, $\langle P_{n-1}, P_{n-1} \rangle$ et $\langle P_{n-2}, P_{n-2} \rangle$.
 - d. Montrer que $\langle P_n, P_n \rangle = \frac{\pi}{2^{2n+1}}$.